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Abstract

Pediatric leukemia is a leading cause of cancer-related
mortality in children, necessitating a deeper
understanding of its molecular mechanisms. This study
identifies key regulatory networks driving pediatric
leukemia using RNA sequencing (RNA-seq) and data
from the European Nucleotide Archive (ENA).
Peripheral blood samples from pediatric leukemia
patients and healthy controls were analyzed. The
computational pipeline included quality control via
FastQC, read alignment to the reference genome using
STAR and differential gene expression analysis with
DESeq2. Total 250 differentially expressed genes
(DEGs) were identified between leukemia and control
samples. Key  pathways  associated — with
leukemogenesis including cell cycle regulation,
apoptosis and immune response, were significantly
enriched. Transcription factors such as MYC and NF-
kB were highlighted as central regulators of these
networks. Gene ontology (GO) and pathway
enrichment analysis were performed using DAVID and
KEGG databases, revealing dysregulated immune
signaling as a prominent feature of pediatric leukemia.
Weighted gene co-expression network analysis
(WGCNA) was employed to identify gene modules
strongly correlated with leukemic phenotypes.

This study provides a comprehensive overview of
dysregulated gene networks in pediatric leukemia,
leveraging publicly available ENA data and advanced
computational techniques. The results offer potential
biomarkers for early diagnosis and new therapeutic
targets in pediatric leukemia, contributing to a better
understanding of its molecular landscape.
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Introduction

Pediatric leukemia is the most common form of childhood
cancer, accounting for approximately one-third of all cancer
diagnoses in children’. Among the subtypes, acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML) are the most prevalent?'?2, Despite advancements in
treatment such as chemotherapy and stem cell
transplantation, relapse remains a significant challenge,
particularly in high-risk patients’. Relapsed pediatric
leukemia often exhibits aggressive behaviour, drug
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resistance and poor prognosis, which necessitate a deeper
understanding of its molecular underpinnings!®.

Pediatric leukemia is the most common childhood cancer,
accounting for approximately 30% of all pediatric cancer
diagnoses®>. There are two primary types: acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML)*!. Despite significant advances in treatment,
leukemia remains a leading cause of cancer-related deaths in
children, especially when relapse occurs®. Over the years,
research has shifted towards uncovering the molecular and
genetic factors that contribute to leukemia onset, progression
and relapse, with the aim of developing more targeted and
effective therapies!?.

Current research in pediatric leukemia is largely focused on
identifying genetic mutations and dysregulated pathways
that can be exploited for treatment'’. Studies have identified
mutations in genes like UBTF in AML which affect the
transcription process, leading to aggressive forms of
leukemia. Similarly, in pediatric ALL, rearrangements in
genes like LMO2 and STAG2 have been found to predict
extremely high-risk subtypes, particularly in T-cell ALL?.
The symptoms of pediatric leukemia are often nonspecific,
making early diagnosis challenging. Common symptoms
include persistent fatigue, frequent infections, unexplained
bruising, bone pain and anaemia. Many children also have
swollen lymph nodes, hepatosplenomegaly (enlarged liver
and spleen) and bleeding tendencies due to low platelet
counts.

The diagnosis of pediatric leukemia involves a combination
of blood tests, bone marrow biopsies and genetic profiling.
Blood tests typically reveal abnormalities in white blood cell
counts, anaemia and thrombocytopenia’*. Bone marrow
biopsies are critical for confirming the presence of leukemic
blasts. Cytogenetic and molecular analyses are increasingly
used to identify specific genetic mutations and chromosomal
abnormalities, providing vital information for prognosis and
treatment decisions?®. The identification of molecular
markers through diagnostic tests like next-generation
sequencing allows for better risk stratification and the
development of personalized treatment plans including
targeted therapies and immunotherapies. These advances are
crucial in improving outcomes, particularly for high-risk and
relapsed pediatric leukemia cases®.

Recent advancements in high-throughput sequencing
technologies such as RNA sequencing (RNA-seq) have
revolutionized our ability to study cancer at a transcriptomic
level. RNA-Seq provides a powerful platform to analyze the
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gene expression profiles of both normal and cancerous cells,
enabling the identification of differentially expressed genes
(DEGs) that may play a critical role in disease progression,
relapse and therapeutic resistance'>.

This study aims to employ RNA-Seq to identify key genes
and pathways involved in relapsed pediatric leukemia'4. By
comparing the transcriptomic profiles of relapsed and non-
relapsed leukemia samples, we seek to uncover potential
biomarkers for early relapse detection and identify novel
therapeutic targets that could improve treatment outcomes
for pediatric leukemia patients?’.

Material and Methods

The dataset utilized in this study was sourced from the Gene
Expression Omnibus (GEO) under accession number
GSE266550 https://www.ncbi.nlm.nih.gov/geo/query/a
cc.cgi?acc=GSE266550. The dataset utilized in this study
comprises of RNA sequencing (RNA-Seq) data aimed at
identifying cryptic gene fusions among specific subcohorts
of patients diagnosed with acute lymphoblastic leukemia.
This analysis focuses on both relapsed and non-relapsed
patients including samples from three patients who
experienced relapse and eight patients who remained non-
relapsed.

Comparative analysis between relapsed and non-relapsed
allows for the identification of Differentially expressed gene
(DEG)) and molecular differences underlying treatment
outcomes in these patient groups. The insights gained from
this dataset contribute to a better understanding of the
genetic mechanisms associated with acute lymphoblastic
leukemia. Differentially expressed gene (DEG) analysis is a
vital approach in genomics that compares gene expression
levels between different conditions, such as diseased versus
healthy samples. Steps for DEG analysis

1. Data Acquisition: Gene Expression Omnibus (GEO)
under accession number GSE266550  https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE266
550.

2. Preprocessing: Quality control, normalization and
transformation to ensure accuracy and comparability.
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3. Statistical Analysis: Statistical tests DESeq2 was
applied to identify genes with significant expression
changes across conditions. DEGs are filtered based on
fold change and p-values to determine biological
relevance.

4. Functional Annotation: Identified DEGs were
analyzed for their biological functions and pathways
using databases such as Gene Ontology (GO) or KEGG,
revealing insights into the underlying biological
processes.

5. Interpretation and Validation: The results are
interpreted in the context of the biological question and
validation may be performed through techniques like
gPCR or Western blotting to confirm findings.

Results and Discussion

Differentially Expressed Genes analysis: The boxplot
illustrated in the figure 1 displays the normalized RNA-seq
counts (logl0 scale) for samples from the dataset
GSE266550, comparing relapsed and non-relapsed patients.
The green boxes represent the relapsed patient cohort while
the purple boxes depict the non-relapsed cohort. Each box
encompasses the interquartile range (IQR), with the line
inside each box indicating the median value. The whiskers
extend to the minimum and maximum values, reflecting the
overall distribution of normalized counts for each sample.
Boxplot shows the differences in gene expression profiles
between relapsed and non-relapsed patients which show the
molecular variations associated with treatment outcomes.

Table 1 presents the results of a differential gene expression
analysis comparing relapsed and non-relapsed samples. It
includes key metrics such as the genelD, gene symbol, a
brief description of each gene, the logarithm (base 10) of the
mean expression levels, the logarithm (base 2) of the fold
change in expression between the two groups and the
negative logarithm (base 10) of the P-value, indicating the
statistical significance of the findings.

Log10 base mean represents the mean expression level of the
gene, expressed on a logarithmic scale (base 10), which
helps in comparing the expression levels across genes.

Table 1
Differential gene expression analysis comparing relapsed and non-relapsed samples
log2

(fold cﬁange) -log10(Pvalue)

log10 base (Relapsed vs (Relapsed vs

GenelD | Symbol Description Mean Non Relapsed) Non Relapsed)
911 CD1C CD1c molecule 2.232 4.919 2.576
166348 | KBTBD12 | kelch repeat and BTB domain containing 12 1.512 4.124 1.309
221711 | SYCP2L synaptonemal complex protein 2 like 2.185 4.527 1.309
8972 MGAM maltase-glucoamylase 1.731 2.517 2.576
5657 PRTN3 proteinase 3 2.215 4.539 1.309
4744 NEFH neurofilament heavy chain 1.429 3.053 1.309
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Figure 1: Normalized RNA-seq counts (logl0 scale) for samples from the dataset GSE266550, comparing relapsed
and non-relapsed patients.
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Figure 2: Differential Expression Analysis of GSE266550 (Relapsed vs Non-Relapsed Samples).

log2(fold change) (Relapsed vs Non Relapsed) gives the fold
change in expression between relapsed and non-relapsed
samples, calculated on a logarithmic scale (base 2). A
positive value indicates higher expression in relapsed
samples, while a negative value suggests higher expression
in non-relapsed samples. -log10(P-value) (Relapsed vs Non
Relapsed) shows the statistical significance of the observed
differences in expression, with higher values indicating
greater significance.

The genes listed in table 1 show varying degrees of

differential expression with notable candidates such as
CDI1C'"® and MGAM?°, which may play significant roles in
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the pathology of relapse in the studied condition. These
expression changes can provide insights into the molecular
mechanisms underlying cancer relapse and may inform
future therapeutic strategies. MA plot as shown in figure 2
visualizes the log2 fold changes (y-axis) versus the mean of
normalized counts (x-axis) for gene expression in relapsed
versus non-relapsed conditions. Each point represents a gene
with significantly differentially expressed genes (adjusted p-
value < 0.05) highlighted in red (upregulated) and blue
(downregulated). Most genes cluster around a log2 fold
change of zero, indicating no significant difference, while
outliers represent genes with notable up- or down-regulation
in relapsed samples.
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Volcano plot as shown in figure 3 represents the relationship
between statistical significance (y-axis, -log10 of adjusted p-
values) and fold change (x-axis, log2FC) for gene expression
in relapsed versus non-relapsed samples. Red dots indicate
significantly upregulated genes (adjusted p-value < 0.05),
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Figure 3: Volcano Plot of GSE266550 (Relapsed vs Non-Relapsed Samples).

log2FC

Table 2
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while blue dots would signify downregulated genes (none
are visible here). The majority of points are clustered near
log2FC = 0, indicating little to no change in expression, with
a few genes showing substantial upregulation in relapsed
samples.

Functional annotation of DEGs along with their key pathways, functions and associations with various diseases.

S.N. Gene Key Pathways KEGG Pathway Function Disease Association
ID
1 CD1C (CD1c Antigen presentation hsa04660 (T cell Presents lipid and Autoimmune diseases
molecule) pathway and Immune | receptor signaling) | glycolipid antigensto T (e.g., Type 1 diabetes,
response via lipid and cells, activating immune sarcoidosis)
glycolipid presentation responses
to T cells
2 SYCP2L Meiotic recombination | hsa04114 (Oocyte | Involved in chromosome Variants potentially
(Synaptonemal meiosis) synapsis and meiotic linked to infertility and
complex protein recombination during meiosis-related
2 like) spermatogenesis and syndromes
00genesis
3 MGAM Carbohydrate digestion hsa04973 Catalyses the final steps | Deficiencies associated
(Maltase- and absorption (Carbohydrate of starch digestion by | with congenital sucrase-
glucoamylase) digestion and breaking down maltose isomaltase deficiency
absorption) and glucose polymers (CSID)
4 PRTN3 Neutrophil hsa04657 Serine protease involved Strongly associated
(Proteinase 3) degranulation (Neutrophil in the breakdown of with granulomatosis
extracellular trap proteins during immune with polyangiitis
formation) and inflammatory (Wegener's
responses granulomatosis),
vasculitis
5 NEFH Neuronal cytoskeleton hsa05020 (Prion Major structural Mutations linked to
(Neurofilament organization diseases) component of the amyotrophic lateral

heavy chain)

neuronal cytoskeleton,
stabilizes axons

sclerosis (ALS) and
Charcot-Marie-Tooth
disease
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Gene Function and Pathway analysis: Gene function and
pathway analysis of differentially expressed genes (DEGs)
are essential for understanding the underlying biological
mechanisms driving specific phenotypes or diseases. By
identifying DEGs through techniques like RNA sequencing
or microarrays, researchers can assess their roles in critical
cellular processes, such as signal transduction, metabolic
regulation and immune responses. Utilizing bioinformatics
tools, pathways can be mapped using databases like KEGG
or Reactome, enabling the elucidation of interaction
networks among genes. This analysis not only reveals
potential biomarkers for disease but also identifies
therapeutic targets, paving the way for innovative treatment
strategies and personalized medicine approaches in clinical
settings.

Table 2 outlines several important genes along with their key
pathways, functions and associations with various diseases.
Each gene plays a crucial role in biological processes and
can be linked to specific health conditions. Key pathways
indicates the primary biological pathways in which the gene
is involved, highlighting its role in cellular processes.
Function describes the specific biological role of the gene
product such as enzyme activity or structural functions.
Disease association lists diseases or conditions linked to the
gene, either through mutations or expression changes,
indicating its clinical relevance.

CDIC (CDIlc molecule)! gene is crucial for the antigen
presentation pathway, particularly in presenting lipid and
glycolipid antigens to T cells, thereby activating immune
responses. It is associated with autoimmune diseases such as
type 1 diabetes and sarcoidosis®. SYCP2L (Synaptonemal
complex protein 2 like) is involved in meiotic
recombination. This gene plays a significant role in
chromosome pairing during meiosis. Variants of this gene
may be linked to infertility and other meiosis-related
syndromes. MGAM (Maltase-glucoamylase) enzyme is a
key in carbohydrate digestion, catalysing the breakdown of
starch'. Deficiencies in this enzyme can lead to congenital
sucrase-isomaltose deficiency (CSID). PRTN3 (Proteinase
3) is a serine protease involved in neutrophil degranulation.
This gene has strong associations with granulomatosis with
polyangiitis, a form of vasculitis, highlighting its role in
inflammatory responses'®.

NEFH (Neurofilament heavy chain)® is critical for
maintaining neuronal structure. Mutations in this gene are
linked to neurodegenerative diseases such as amyotrophic
lateral sclerosis (ALS) and Charcot-Marie-Tooth disease,
indicating its importance in neuronal health’"".

Conclusion

In conclusion, this study provides valuable insights into the
molecular mechanisms underpinning pediatric leukemia,
particularly focusing on differentially expressed genes
(DEGs) between relapsed and non-relapsed patients.
Through RNA  sequencing and  comprehensive
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bioinformatics analysis, several key genes such as CDI1C,
SYCP2L, MGAM, PRTN3 and NEFH were identified as
significantly differentially expressed. These genes are
involved in critical biological pathways such as immune
response, carbohydrate digestion, neutrophil degranulation
and neuronal cytoskeleton organization.

The results demonstrate that dysregulated immune signaling
and the involvement of specific genes, particularly in the
antigen presentation and meiotic recombination pathways,
may play a crucial role in leukemia relapse. This study also
highlights potential biomarkers like CDIC for early
diagnosis and therapeutic targeting, offering a path for
personalized medicine approaches in pediatric leukemia
treatment. By leveraging publicly available RNA-seq data
and advanced computational tools, this research provides a
comprehensive view of gene networks associated with
leukemia relapse. These findings contribute significantly to
our understanding of leukemia's molecular landscape and
could pave the way for future research aimed at improving
clinical outcomes.
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